If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-48t-64=0
a = 16; b = -48; c = -64;
Δ = b2-4ac
Δ = -482-4·16·(-64)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-80}{2*16}=\frac{-32}{32} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+80}{2*16}=\frac{128}{32} =4 $
| -18=4(a–10)–18 | | 2u^2–11u+12=0 | | 36=3z+12 | | -3p–5p=-72 | | -2-5(3x+6)=72 | | 10r+16=-22+10r | | 1/2m-4/3m=-4/3 | | 2(x+3)-10=34 | | 67=11m+1 | | 6=-8+n | | 92/u=4 | | 1/2m+4/3m=-4/3 | | 2u2–11u+12=0 | | -6(d–10)–9=15 | | 2=38/v | | 14r+15=7r+46 | | 5q2+8q+3=0 | | -v–12=-5 | | -9(9+y)=18 | | 21d2+10d=0 | | 32/4-6=x+2 | | w+102=0 | | 8(10-k)=2k8(10−k)=2k | | 5d2d+4=10+5d2, | | 15=-3(x+3) | | 23=-8x=-3 | | -70=6d+8d | | 2a+7=79 | | 64=8(4+p) | | -(14-15)=x+8 | | -8+22=13x-512x | | x+x+15=79 |